SUMO modification regulates MafB-driven macrophage differentiation by enabling Myb-dependent transcriptional repression.

نویسندگان

  • Silke Tillmanns
  • Claas Otto
  • Ellis Jaffray
  • Camille Du Roure
  • Youssef Bakri
  • Laurent Vanhille
  • Sandrine Sarrazin
  • Ronald T Hay
  • Michael H Sieweke
چکیده

During the execution of differentiation programs, lineage-specific transcription factors are in competition with antagonistic factors that drive progenitor proliferation. Thus, the myeloid transcription factor MafB promotes macrophage differentiation of myeloid progenitors, but a constitutively active Myb transcription factor (v-Myb) can maintain proliferation and block differentiation. Little is known, however, about the regulatory mechanisms that control such competing activities. Here we report that the small ubiquitin-like protein SUMO-1 can modify MafB in vitro and in vivo on lysines 32 and 297. The absence of MafB SUMO modification increased MafB-driven transactivation and macrophage differentiation potential but inhibited cell cycle progression and myeloid progenitor growth. Furthermore, we observed that direct repression of MafB transactivation by v-Myb was strictly dependent on MafB SUMO modification. Consequently, a SUMOylation-deficient MafB K32R K297R (K32,297R) mutant could specify macrophage fate even after activation of inducible Myb alleles and resist their differentiation-inhibiting activity. Our findings suggest that SUMO modification of MafB affects the balance between myeloid progenitor expansion and terminal macrophage differentiation by controlling MafB transactivation capacity and susceptibility to Myb repression. SUMO modification of lineage-specific transcription factors may thus modulate transcription factor antagonism to control tissue homeostasis in the hematopoietic system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modification of promyelocytic leukemia zinc finger protein (PLZF) by SUMO-1 conjugation regulates its transcriptional repressor activity.

Promyelocytic leukemia zinc finger (PLZF) protein is a sequence-specific DNA-binding protein that represses the transcriptional activity of target genes such as those for cyclin A and the interleukin-3 receptor alpha chain. The PLZF gene becomes fused to the retinoic acid receptor alpha gene as a result of the t(11, 17)(q23;q21) chromosomal translocation that is associated with acute promyelocy...

متن کامل

SUMO-1 modification of MEF2A regulates its transcriptional activity

Myocyte enhancer factor 2 (MEF2) transcription factors are crucial regulators controlling muscle-specific and growth factor-inducible genes. Numerous studies have reported that the activity of these transcription factors is tightly modulated by posttranslational modifications such as activation by specific phosphorylation as well as repression by class II histone deacetylases (HDACs). We hypoth...

متن کامل

Daxx mediates SUMO-dependent transcriptional control and subnuclear compartmentalization.

SUMO (small ubiquitin-related modifier) modification is emerging as an important post-translational control in transcription. In general, SUMO modification is associated with transcriptional repression. Although many SUMO-modified transcription factors and co-activators have been identified, little is known about the mechanism underlying SUMOylation-elicited transcriptional repression. Here, we...

متن کامل

SUMOylation of Blimp-1 is critical for plasma cell differentiation.

Transcriptional repressor B lymphocyte-induced maturation protein-1 (Blimp-1) is a master regulator of plasma cell differentiation. Here we show that Blimp-1 is covalently modified by SUMO1 at lysine 816, a modification mediated by SUMO E3 ligase PIAS1. Mutation of Blimp-1 lysine 816 reduces transcriptional repression--correlating with a reduced interaction with a histone deacetylase, HDAC2--an...

متن کامل

Regulation of the dual-function transcription factor Sp3 by SUMO.

In eukaryotes, gene expression is controlled by a relatively small number of regulators. Post-translational modifications dramatically increase the functional possibilities of those regulators. Modification of many transcription factors and cofactors by SUMO (small ubiquitin-related modifier) correlates, in most cases, with inhibition of transcription. Recent studies suggest a model whereby SUM...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 27 15  شماره 

صفحات  -

تاریخ انتشار 2007